Государственное бюджетное общеобразовательное учреждение Гимназия №441Фрунзенского района Санкт-Петербурга

«ОТРИНЯП»

Педагогическим советом ГБОУ Гимназия №441 Протокол №. 1 от 28.08.2024 Секретарь педагогического совета

Гордина А.О.

«УТВЕРЖДЕНО»

Приказом № 130 По ГБОУ Гимназии №441 от 28.08.2024

Директор ГБОУ Гимназия №441

Кулагина Н.И.

Дополнительная общеразвивающая программа «3D-проектирование. Blender»

Возраст учащихся: 10-18 лет Срок реализации: 1 год

Захаров Матвей Олегович, педагог дополнительного образования

1. Пояснительная записка

Занятия по 3D моделированию помогают приобрести глубокие знания в области технических наук, ценные практические умения и навыки, воспитывают трудолюбие, дисциплинированность, культуру труда, умение работать в коллективе. Знания, полученные при изучении программы «3D-проектирование. Blender», учащиеся могут применить для подготовки мультимедийных разработок по различным предметам — математике, физике, химии, биологии и др. Трехмерное моделирование служит основой для изучения систем виртуальной реальности.

Направленность дополнительной общеразвивающей программы техническая.

Уровень освоения программы: базовый.

Актуальность данной программы состоит в том, что она направлена на овладение знаниями в области компьютерной трехмерной графики конструирования и технологий на основе методов активизации творческого воображения, и тем самым способствует развитию конструкторских, изобретательских, научно-технических компетентностей и нацеливает детей на осознанный выбор необходимых обществу профессий, как инженер- конструктор, инженер-технолог, проектировщик, дизайнер и т.д.

Работа с 3D графикой – одно из самых популярных направлений использования персонального компьютера, причем занимаются этой работой не, только профессиональные художники и дизайнеры.

Данные направления ориентируют подростков на рабочие специальности, воспитывают будущих инженеров — разработчиков, технарей, способных к высокопроизводительному труду, технически насыщенной производственной деятельности.

Адресат программы: обучающиеся основной и старшей школы, ориентированных в области информатики, математики, физики, моделирования, компьютерной графики.

Данная образовательная программа разработана для работы с обучающимися от 10 до 18 лет. Программа предусматривает отбор мотивированных детей для участия в соревнованиях регионального и более высокого уровня. Программа не адаптирована для обучающихся с OB3.

Педагогическая целесообразность этой программы заключается в том, что она в том числе ориентирована на изучение принципов проектирования и 3D-моделирования для создания и практического изготовления отдельных элементов технических проектов обучающихся, и тем самым способствует развитию конструкторских, изобретательских, научно- технических компетентностей и нацеливает детей на осознанный выбор необходимых обществу профессий, как инженер-конструктор, инженер-технолог, проектировщик, дизайнер и т.д. Поддержка и развитие детского технического творчества соответствуют актуальным и перспективным потребностям личности и стратегическим национальным приоритетам Российской Федерации. Создание условий для мотивации, подготовки и профессиональной ориентации школьников для возможного продолжения учебы в ВУЗах и последующей работы на предприятиях по специальностям, связанным с проектированием и 3D-моделированием.

Цель - развитие конструкторских способностей детей и формирование пространственного представления за счет освоения базовых возможностей среды трехмерного компьютерного моделирования.

Задачи

Обучающие:

- Познакомить учащихся с основами работы на компьютере, основными частями ПК, назначением и функциями устройств, входящих в состав компьютерной системы;
- Познакомить с системами 3D-моделирования и сформировать представление об основных технологиях моделирования;
- Научить основным приемам и методам работы в 3D-системе;
- Научить создавать базовые детали и модели;
- Научить создавать простейшие 3D-модели твердотельных объектов;
- Научить использовать средства и возможности программы для создания разных моделей.

Развивающие:

- Формирование и развитие информационной культуры: умения работать с разными источниками;
- Развитие исследовательских умений, умения общаться, умения взаимодействовать, умения доводить дело до конца;
- Развитие памяти, внимательности и наблюдательности, творческого воображения и фантазии через моделирование 3D-объектов;
- Развитие информационной культуры за счет освоения информационных и коммул
- Формирование технологической грамотности;
- Развитие стратегического мышления;
- Получение опыта решения проблем с использованием проектных технологий.

Воспитательные:

- Сформировать гражданскую позицию, патриотизм и обозначить ценность инженерного образования;
- Воспитать чувство товарищества, чувство личной ответственности во время подготовки и защиты проекта, демонстрации моделей объектов;
- Сформировать навыки командной работы над проектом;
- Сориентировать учащихся на получение технической инженерной специальности;
- Научить работать с информационными объектами и различными источниками информации;
- Приобрести межличностные и социальные навыки, а также навыки общения.

Условия реализации программы

Сроки реализации дополнительной образовательной программы — программа рассчитана на 1 год, с проведением занятий 1 раз в неделю. Продолжительность занятия 2 академических часа.

Содержание занятий отвечает требованию к организации внеурочной деятельности. Подбор заданий отражает реальную интеллектуальную подготовку детей, содержит полезную и любопытную информацию, способную дать простор воображению.

Формы и режим занятий

Реализация данной программы предполагает следующие формы обучения – очную

Занятия проходят в форме лекций и практических занятий, на которых обучающиеся на практике применяют полученные знания.

Занятие проходит 1 раз в неделю по 2 академических часа в следующих формах:

- проектная деятельность самостоятельная работа;
- работа в парах, в группах;
- творческие работы;
- индивидуальная и групповая исследовательская работа;
- знакомство с научно-популярной

литературой. Формы контроля:

- практические работы;
- мини-проекты.

Методы обучения:

- Познавательный (восприятие, осмысление и запоминание учащимися нового материала с привлечением наблюдения готовых примеров, моделирования, изучения иллюстраций, восприятия, анализа и обобщения демонстрируемых материалов).
- Метод проектов (при усвоении и творческом применении навыков и умений в процессе разработки собственных моделей).
- Систематизирующий (беседа по теме, составление систематизирующих таблиц, графиков, схем и т.д.).
- Контрольный метод (при выявлении качества усвоения знаний, навыков и умений и их коррекция в процессе выполнения практических заданий).
 - Групповая работа.

Ожидаемые результаты и способы определения их результативности

Предметные:

- ✓ Освоят элементы технологии проектирования в 3D системах и будут применять знания и умения при реализации исследовательских и творческих проектов;
- ✓ приобретут навыки работы в среде 3D моделирования и освоят основные приемы и технологии при выполнении проектов трехмерного моделирования;
- ✓ освоят основные приемы и навыки создания и редактирования чертежа с помощью инструментов 3D среды;
- ✓ овладеют понятиями и терминами информатики и компьютерного 3D проектирования:

Метапредметные:

- ✓ смогут научиться составлять план исследования и использовать навыки проведения исследования с 3D моделью;
- ✓ освоят основные приемы и навыки решения изобретательских задач и научатся и взаимодействия в процессе реализации индивидуальных и коллективных проектов;
- ✓ будут использовать знания, полученные за счет самостоятельного поиска в процессе реализации проекта;
- ✓ освоят основные этапы создания проектов от идеи до защиты проекта и научатся применять на практике;
- ✓ освоят основные обобщенные методы работы с информацией с использованием программ 3D моделирования.

Личностные:

- ✓ Смогут работать индивидуально, в малой группе и участвовать в коллективном проекте;
- ✓ Смогут понимать и принимать личную ответственность за результаты коллективного проекта;

- ✓ Смогут без напоминания педагога убирать свое рабочее место, оказывать помощь другим учащимся. будут проявлять творческие навыки и инициативу при разработке и защите проекта;
- ✓ Смогут работать индивидуально, в малой группе и участвовать в коллективном проекте;
- ✓ Смогут взаимодействовать с другими учащимися вне зависимости от национальности, интеллектуальных и творческих способностей.

Формы подведения итогов реализации дополнительной образовательной программы - Оценка усвоения программы производится на основе наблюдений за текущей работой обучающихся. По итогам результатов опроса, осуществляемого в устной, письменной тестовой форме, результатов проверки обязательных графических работ. Итогом усвоения программы могут быть участие обучающихся в районных и областных конкурсах и олимпиадах по компьютерной графике и черчению.

Начальный — проводится в начале учебного года. Его цель — первоначальная оценка знаний и умений обучающихся.

Текущий – в течение учебного года. Его цель – определить степень усвоения обучающимися учебного материала, подбор наиболее эффективных методов обучения.

Прмежуточный — в конце учебного года. Его цель — определить изменение уровня развития способностей обучающихся, получение сведений для совершенствования программы и методов обучения..

Итогом реализации дополнительной общеобразовательной (общеразвивающей) программы является контрольный урок. На контрольном уроке проверяется теоретическая и практическая подготовка учащихся. Уровни освоения программы — высокий, средний, низкий. Методом проверки теоретических знаний является устный опрос.

Аттестация: текущая, промежуточная.

Содержание программы Учебный (тематический) план:

$N_{\underline{0}}$	Наименование темы	Количество часов			Форма
п/п		Bce	Теоретич	Практическ	контроля
		ГО	еские занятия	ие занятия	
1	Вводное занятие Основные mesh-объекты Задание - 1	2	1	1	Сохраненный файл с моделью, опрос
2	Разбор функций в режиме редактирования Задание - 2	2	1	1	Сохраненный файл с моделью
3	Разбор функций в режиме редактирования Задание - 3	2	1	1	Сохраненный файл с моделью
4	Разбор функций в режиме редактирования	2	1	1	Сохраненный файл с

	Задание - 4				моделью
5	Модификатор логический Задание - 5	2	1	1	Сохраненный файл с моделью
6	Настройки рендера Задание - 6	2	1	1	Сохраненный файл с моделью
7	Материалы Задание - 7	2	1	1	Сохраненный файл с моделью
8	Текстурирование Задание - 8	2	1	1	Сохраненный файл с моделью
9	Система частиц Задание - 9	2	1	1	Сохраненный файл с моделью
10	Режим редактирования функции вращения, гладкого затенения Задание - 10	2	1	1	Сохраненный файл с моделью
11	Построение модели с последующим текстурированием и рендером по заданию Задание - 11	2	1	1	Сохраненный файл с моделью
12	Построение модели в новогодней тематике Задание – 12	2	-	2	Сохраненный файл с моделью
13	Построение модели в новогодней тематике Задание – 12	2	-	2	Сохраненный файл с моделью
14	Настройка сцены и рендер модели к новому году Задание - 12	2	-	2	Сохраненный файл с моделью
15	Раздел анимация Задание – 13	2	-	2	Сохраненный файл с моделью

16	Раздел анимация Задание – 14	2	-	2	Сохраненный файл с моделью
17	Операции массив, кривые Задание – 15	2	-	2	Сохраненный файл с моделью
18	Симуляция частиц Задание – 16	2	-	2	Сохраненный файл с моделью
19	Симуляция частиц Задание - 17	2	-	2	Сохраненный файл с моделью
20	Построение модели к 23 февраля Задание - 18	2	-	2	Сохраненный файл с моделью
21	Функции текстурирования Задание - 19	2	-	2	Сохраненный файл с моделью
22	Построение модели к 8 марта Задание - 20	2	-	2	Сохраненный файл с моделью
23	Построение модели на тему Задание – 21	2	-	2	Сохраненный файл с моделью
24	Текстурирование и анимация модели Задание - 21	2	-	2	Сохраненный файл с моделью
25	Создание модели ко дню космонавтики Задание – 22	2	-	2	Сохраненный файл с моделью, опрос
26	Создание модели ко дню космонавтики Задание – 22	2	-	2	Сохраненный файл с моделью
27	Анимация и рендер модели ко дню космонавтики Задание - 22	2	-	2	Сохраненный файл с моделью

28	Построение модели по теме Задание - 23	2	-	2	Сохраненный файл с моделью
29	Создание модели к 9 мая Задание – 24	2	-	2	Сохраненный файл с моделью
30	Создание модели к 9 мая Задание – 24	2	-	2	Сохраненный файл с моделью
31	Анимация и текстурирование модели к 9 мая Задание – 24	2	-	2	Сохраненный файл с моделью
32	Проектирование и создание проекта дома/транспортного средства Задание - 25	2	-	2	Сохраненный файл с моделью
33	Проектирование и создание проекта дома/транспортного средства Задание - 25	2	-	2	Сохраненный файл с моделью
34	Проектирование и создание проекта дома/транспортного средства Задание - 25	2	-	2	Сохраненный файл с моделью
35	Рендер и подготовка презентации проекта Задание - 25	2	-	2	Сохраненный файл с моделью
36	Заключительное занятие выдача дипломов Защита проекта	2	-	2	Сохраненный файл с моделью
	Итого:	72	11	61	

Универсальные компетенции (SoftSkills):

- умение работать в команде: работа в общем ритме, эффективное распределение задач и др.;
- наличие высокого познавательного интереса учащихся,
- умение ориентироваться в информационном пространстве, продуктивно использовать техническую литературу для поиска сложных решений;
- умение ставить вопросы, связанные с темой проекта, выбор наиболее эффективных решений задач в зависимости от конкретных условий;

- наличие критического мышления;
- проявление технического мышления, познавательной деятельности, творческой инициативы, самостоятельности;
- способность творчески решать технические задачи;
- готовность и способность применения теоретических знаний по физике, информатике для решения задач в реальном мире;
 - способность правильно организовывать рабочее место и время для достижения поставленных целей.

Предметные компетенции (HardSkills):

- знание основ и принципов теории решения изобретательских задач, овладение начальными базовыми навыками инженерии;
- знание и понимание принципов проектирования в САПР, основ создания и проектирования 2D и 3D моделей;
- знание основ и овладение практическими базисными знаниями в работе на лазерном оборудовании;
- знание основ и овладение практическими базисными знаниями в работе на аддитивном оборудовании;
- знание основ и овладение практическими базисными знаниями в работе на станках с числовым программным управлением (фрезерные станки);
- знание основами и овладение практическими базисными знаниями в работе с ручным инструментом;
- знание основами и овладение практическими базисным знаниям в работе с электронными компонентами;
- знание и понимание основных технологий, используемых в Хайтеке, их отличие, особенности и практики применения при разработке прототипов;
- знание пользовательского интерфейса профильного ПО, базовых объектов инструментария.

Освоение учащимися основ современных методов реализации проектов;

- навыки проектной деятельности;
- навыки планирования работ и постановки задач;
- навыки научно-исследовательской деятельности;
- навыки инженерного и системного мышления.

Список использованной литературы

- 1. Альтшуллер Г.С. Поиск новых идей: от озарения к технологии: Теория и практика решения изобретательских задач / Г.С. Альтшуллер, Б.Л. Злотников, А.В. Зусман, В.И. Филатов. Кишинев: КартяМолдовеняскэ, 2012. 185 с.
- 2. Виневская А. В. Метод кейсов в педагогике: практикум для учителей и студентов / А. В. Виневская; под ред. М.А. Пуйловой. Ростов н/Д: Феникс, 2015 143 с.
- 3. Добринский Е. С. Быстрое прототипирование: идеи, технологии, изделия / Е. С.Добринский // Полимерные материалы. -2011. -№9. -148 с.
- 4. Иванова Е. О. Теория обучения в информационном обществе / Е. О. Иванова, И. М. Осмоловская.— М.: Просвещение, 2011. 190 с.
- 5. Ситуационный анализ, или Анатомия кейс-метода / Под ред. Ю. П. Сурмина. Киев: Центр инноваций и развития, 2002. 286 с.
- 6. Фомин Б. Rhinoceros 3D моделирование / Пер. с англ. М.: Издательство «Слово», 2005. 290 с.

- 1. Терехов М. В. Технология трехмерного моделирования в Blender 3D: учеб. пособие / М.
- В. Терехов, А. А. Гладченков, А. В. Кузьменко, А. П.Сазонова, Е. Н. Леонов, Е. В. Рак, Л.
- А. Филиппова. Москва : ФЛИНТА, 2018. 80 с.
- 2. Кун К. Удивительные машины Blender 3D. Перевод: Striver / К. Кун.
- 3. Великобритания. : Packt Publishing, 2016. 392 с.
- 4. Прахов А. Самоучитель Blender 2.7. СПб.: БХВ-Петербург, 2016.— 400 с.
- 5. Большаков В.П. Основы 3D-моделирования / В.П. Большаков, А.Л. Бочков.- СПб.: Питер, 2013. 304c.
- 6. Потемкин А. Трехмерное твердотельное моделирование. М: Компьютер Пресс, 2002. 296с.

Список рекомендуемых Интернет-ресурсов

- 1. Долгоруков А. М. Метод case-study как современная технология профессиональноориентированного обучения [Электронный ресурс]. Режим доступа: http://www.evolkov.net/case/case.study.html, свободный. (02.09.2024)
- 2. Казмирчук К., Довбыш В. Аддитивные технологии в российской промышленности [Электронный ресурс]. Режим доступа: http://konstruktor.net/podrobnee-det/additivnyetexnologii-v-rossijskojpromyshlennosti.html, свободный. (28.08.2024)